The Zero Resource Speech Challenge 2015: Proposed Approaches and Results

نویسندگان

  • Maarten Versteegh
  • Xavier Anguera Miró
  • Aren Jansen
  • Emmanuel Dupoux
چکیده

This paper reports on the results of the Zero Resource Speech Challenge 2015, the first unified benchmark for zero resource speech technology, which aims at the unsupervised discovery of subword and word units from raw speech. This paper discusses the motivation for the challenge, its data sets, tasks and baseline systems. We outline the ideas behind the systems that were submitted for the two challenge tracks: unsupervised subword unit modeling and spoken term discovery, and summarize their results. The results obtained by participating teams show great promise; many systems beat the provided baselines and some even perform better than comparable supervised systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Speech Signal to Symbol Transformation for Zero Resource Speech Applications

Zero resource speech processing refers to a scenario where no or minimal transcribed data is available. In this paper, we propose a three-step unsupervised approach to zero resource speech processing, which does not require any other information/dataset. In the first step, we segment the speech signal into phonemelike units, resulting in a large number of varying length segments. The second ste...

متن کامل

The zero resource speech challenge 2015

The Interspeech 2015 Zero Resource Speech Challenge aims at discovering subword and word units from raw speech. The challenge provides the first unified and open source suite of evaluation metrics and data sets to compare and analyse the results of unsupervised linguistic unit discovery algorithms. It consists of two tracks. In the first, a psychophysically inspired evaluation task (minimal pai...

متن کامل

Analysis of Audio-Visual Features for Unsupervised Speech Recognition

Research on “zero resource” speech processing focuses on learning linguistic information from unannotated, or raw, speech data, in order to bypass the expensive annotations required by current speech recognition systems. While most recent zero-resource work has made use of only speech recordings, here, we investigate the use of visual information as a source of weak supervision, to see whether ...

متن کامل

Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty

In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE  estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of  noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...

متن کامل

Resource Constrained Project Scheduling with Material Ordering: Two Hybridized Meta-Heuristic Approaches (TECHNICAL NOTE)

Resource constrained project scheduling problem (RCPSP) is mainly investigated with the objective of either minimizing project makespan or maximizing project net present value. However, when material planning plays a key role in a project, the existing models cannot help determining material ordering plans to minimize material costs. In this paper, the RCPSP incorporated with the material order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016